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and the asymmetric variant of the metal-catalyzed carbo-
magnesation are in progress. 
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Activation of molecular oxygen by transition-metal complexes 
has attracted much attention in recent years.' In the present 
communication, we report a novel dioxygenase type ligand oxi­
dation in a dimanganese complex with molecular oxygen; both 
atoms of dioxygen molecule are incorporated into the CH bonds 
of isopropyl groups in the complex. 

Recently, we have reported the oxidative conversion of a (di-
M-hydroxo)manganese(II,N) complex [Mn(HB(3,5-iPr2pz)3)]2-
(OH)2 (1) to the corresponding (di-n-oxo)manganese(III,III) 
complex 2.2 The conversion proceeds almost quantitatively by 
anaerobic oxidation of 1 with KMnO4. However, when 1 was 
aerobically oxidized, noted was formation of another product 3, 
besides 2. Thus, when 1 was stirred in toluene at room tem­
perature under 1 atom of O2 for 30 min, both 2 and 3 were 
obtained with yields (based on 1) of 51 and 38%, respectively.3 

Each product was isolated by careful fractional recrystallizations 
from MeCN. Complex 3 is colored in deep blue and is clearly 
distinct from 2, which is deep brown. Figure 1 represents the 
molecular structure of 3 determined by X-ray crystallography.4 

Complex 3 has a dinuclear structure in which the two manganese 
ions are solely bridged with an oxo ligand. The unusual structural 
feature of the complex is that one isopropyl group in each tris-
(pyrazolyl)borate ligand is oxygenated and it coordinates to each 
manganese ion as an alkoxo ligand. The complex is neutral; 
therefore, the valence of the manganese is ascribed to Mn(III). 

(1) (a) Sheldon, R. A.; Kochi, J. A. Metal-Catalyzed Oxidations of Or­
ganic Compounds: Academic Press: New York, 1981. (b) Oxygen Com­
plexes and Oxygen Activation by Transition Metals; Martell, A. E.; Sawyer, 
D. T., Eds.; Plenum Press: New York, 1988. 

(2) Kitajima, N.; Udai, P. S.; Amagai, N.; Osawa, M.; Moro-oka, Y. / . 
Am. Chem. Soc. In press. 

(3) IR KBH) 2525 cm"1; UV-vis (toluene) 399 (sh), 467 («, 286), 625 nm 
(707); 'H NMR (toluene-d8, -40 0C1 6, ppm) 0.98 (br, 12 H, AZe2CO), 1.42 
(br, 24 H, Me2CH), 1.67 (br, 36 H, We2CH and AZe2CO), 4.95 (br, 10 H, 
Me2CZf), 8.14 (br, 2 H, pz), 11.42 (br, 4 H, pz); FD-MS (m/e) 1086. Anal. 
CaICd(OrC54H90N12O3B2Mn2: C, 59.62; H, 8.28; N, 15.53. Found: C, 59.88; 
H, 8.41; N, 15.43. 

(4) 3 (MW 1086.66) crystallized in the monoclinic space group P^jn with 
a = 16.230 (7) A, 6 = 18.271 (7) Kc = 24.925 (10) A, /3 = 106.70 (3)°, 
V = 7079.5 (5) A3, Z = 4, Dc = 1.020, Dm = 1.02 ± 0.01 g cm"3. Data 
collection (6° < 20 < 45") was completed on a Rigaku AFC-5R diffractom-
eter with graphite-monochromated Mo Ka radiation. The structure was 
solved by the direct method (TEXSAN) and refined by a block-diagonal 
least-squares method with anisotropic thermal parameters for non-hydrogen 
atoms. Hydrogen atoms were calculated and fixed in the final refinements. 
The refinement currently converged at the R(RW) factor of 9.3 (12.7)% for 
4026 reflections (F0 > 3(7(F0)). 

Figure 1. ORTEP drawing of 3. Selected bond distances (A) and angles 
(deg) are as follows: MnI-Nl , 2.19 (1); Mnl-N2, 1.97 (1); Mnl-N3, 
2.19 (1); MnI-Ol , 1.77 (1); Mnl -02 , 1.88 (1); Mn2-N4, 2.14 (1); 
Mn2-N5, 2.18 (1); Mn2-N6, 1.95 (1); Mn2-01, 1.77 (1); Mn2-03, 
1.89 (1); Mnl-Mn2, 3.530 (4); Mn-01-Mn2, 174.9 (7). 

As consistent with the structure, the FD-MS spectrum of 3 exhibits 
a peak at 1086 due to the molecular ion. Another notable feature 
of 3 is that it gives rise to a reasonably sharp and isotropically 
shifted 'H NMR spectrum. The low magnetic susceptibility (2.88 
jtB/mol at 296 K) also suggests the strongly antiferromagnetic 
property of 3. 

When 1 was oxidized with dioxygen in the presence of 10 equiv 
of PPh3, the formation of 3 was completely ceased, whereas 2 was 
obtained with the same yield (ca. 50%) as in the absence of PPh3. 
In this reaction, OPPh3 was formed in 84% yield based on 1. 

In order to ascertain the origin of the three oxygen atoms in 
3, labeling experiments were performed by FD-MS spectroscopy. 
When 18O labeled 1 was oxidized with 16O2, only one 18O atom 
was incorporated into 3, while two 18O atoms were incorporated 
when 1 containing 16O was treated with 18O2. These results clearly 
indicate that the n-oxo atom in 3 is originated from the hydroxo 
groups in 1, and both alkoxo oxygen atoms come from the mo­
lecular oxygen. In these experiments, the formed di-/n-oxo complex 
2 was also analyzed, establishing that both oxo ligands come from 
the hydroxo groups in 1. When 1 containing 16O was oxidized 
with a 1:1 mixture of 16O2 and 18O2, produced was 3 labeled with 
16O16O16O and 16O18O18O with comparable yields; 3 containing 
16O16O18O was not formed considerably. Therefore, it is conclusive 
that the two alkoxo oxygen atoms in 3 are originated from the 
same dioxygen molecule. 

On the basis of these experimental results, we propose the 
following reaction mechanism. The initial reaction between the 
five-coordinate dimanganese(II) complex (1) and molecular ox­
ygen is ascribed to formation of a (M-peroxo)dimanganese(III) 
complex (4) which retains the di-^-hydroxo core. Dissociation 
of H2O2 (the origin is the peroxide ion) from 4 affords 2. As a 
competitive reaction, dissociation of H2O does occur, generating 
a ^-oxo-^-peroxo intermediate (5). Complex 5 undergoes hom-
olysis of the O-O bond to give a dinuclear Mn(IV) oxo inter­
mediate (6), which is responsible for the ligand oxidation.5-9 The 
oxo intermediate 6 oxygenates PPh3 to OPPh3 much faster than 
the isopropyl CH bond; therefore, PPh3 works as an inhibitor for 
the formation of 3. As consistent with the mechanism, the oxy­
genated isopropyl groups in 3 assume a cis configuration. Thus, 

(5) Homolysis of O-O bond of the peroxide ion in dinuclear ^-peroxo 
complexes is established for Fe and Cu.6'7 The reaction of a Ru(II) porphyrin 
complex with molecular oxygen results in formation of a Ru(IV)-oxo complex 
which is effective for epoxidation of olefins.8 

(6) Balch, A. L.; Chan, Y.-W., Cheng, R.-J.; La mar, G. N.; Latos-Gra-
zynski, L.; Renner, M. W. J. Am. Chem. Soc. 1984, 106, 7779. 

(7) Kitajima, N.; Koda, T.; Iwata, Y.; Moro-oka, Y. J. Am. Chem. Soc. 
1990, 112, 8833. 

(8) Groves, T. J.; Quinn, R. J. Am. Chem. Soc. 1985, 107, 5790. 
(9) A related chemistry has been reported for a Co-O2 complex with a 

hindered tris(pyrazolyl)borate ligand: Egan, J. W., Jr.; Haggerty, B. S.; 
Rheingold, A. L.; Sendlinger, S. C; Theopold, K. H. J. Am. Chem. Soc. 1990, 
112, 2445. 
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the appropriate orientation and proximity of the isopropyl groups 
to the reactive oxo ligands in 6 is also an important factor for the 
present intramolecular reaction. 

A few examples of aerobic ligand oxidations of transition-metal 
complexes have previously been reported. These include the 
oxidations of aromatic rings in dinuclear Cu complexes,10 olefinic 
ligand oxidation in an Ir complex," and aliphatic CH bond ox­
idation in a Ni complex.12 

The present ligand oxidation may provide us with a useful 
method to prepare a new type tris(pyrazolyl)borate ligand con­
taining a functional group on one pyrazole ring. Thus, currently, 

(10) (a) Karlin, K. D.; Hayes, J. C; Gultneh, Y.; Cruse, R. W.; McKown, 
J. W.; Hutchinson, J. P.; Zubieta, J. J. Am. Chem. Soc. 1984,106, 2121. (b) 
Sorrell, T. N.; Malachowski, M. R.; Jameson, D. L. Inorg. Chem. 1982, 21, 
3520. (c) Thompson, J. S. J. Am. Chem. Soc. 1984, 106, 8308. (d) Casella, 
L.; Gullotti, M.; Pallanza, G.; Rigoni, L. J. Am. Chem. Soc. 1988, 110, 4221. 
(e) Karlin, K. D.; Cohen, B. I.; Jacobson, R. R.; Zubieta, J. J. Am. Chem. 
Soc. 1987, 109, 6194. (f) Gelling, O. J.; van Bolhuis, F.; Meetsma, A.; 
Feringa, B. L. J. Chem. Soc, Chem. Commun. 1988, 552. (g) Reglier, M.; 
Amadei, E.; Tadayoni, R.; Waegell, B. J. Chem. Soc., Chem. Commun. 1989, 
447. (h) Menif, R.; Martell, A. E. J. Chem. Soc, Chem. Commun. 1989, 
1521. 

(11) Day, V. W.; Klemperer, Lockledge, S. P.; Main, D. J. / . Am. Chem. 
Soc 1990, 112, 2031. 

(12) Chen, D.; Martell, A. E. J. Am. Chem. Soc 1990, 112, 9411. 

efforts are being made to remove the manganese ions from 3. 
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The availability of macroscopic quantities of C60
1"4 has rapidly 

led to remarkable discoveries of its chemical (formation of 
crystalline, structurally characterized transition-metal complex­
es,5"7 hydrogenation,4 fluorination8) and physical (metallic con­
ductivity,10,11 superconductivity12,13 and soft ferromagnetism13 in 

(1) Kratschmer, W.; Lamb, L. D.; Fostiropoulos, K.; Huffman, D. R. 
Nature 1990, 347, 354. 

(2) Taylor, R.; Hare, J. P.; Abdul-Sada, A. K.; Kroto, H. W. J. Chem. 
Soc, Chem. Commun. 1990, 1423. 

(3) Ajie, H.; Alvarez, M. M.; Anz, S. J.; Beck, R. D.; Diederich, F.; 
Fostiropoulos, K.; Huffman, D. R.; Kratschmer, W.; Rubin, Y.; Schriver, K. 
E.; Sensharma, D.; Whetten, R. L. J. Phys. Chem. 1990, 94, 8630. 

(4) Haufler, R. E.; Conceicao, J.; Chibante, L. P. F.; Chai, Y.; Byrne, N. 
E.; Flanagan, S.; Haley, M. M.; O'Brien, S. C; Pan, C; Xiao, Z.; Billups, 
W. E.; Ciufolini, M. A.; Hauge, R. H.; Margrave, J. L.; Wilson, L. J.; Curl, 
R. F.; Smalley, R. E. J. Phys. Chem. 1990, 94, 8634. 

(5) Hawkins, J. M.; Meyer, A.; Lewis, T. A.; Loren, S.; Hollander, F. J. 
Science 1991, 252, 312. 

(6) Fagan, P. J.; Calabrese, J. C; Malone, B. Science 1991, 252, 1160. 
(7) Balch, A. L.; Catalano, V. J.; Lee, J. W. Inorg. Chem., in press. 
(8) Holloway, J. H.; Hope, E. G.; Taylor, R.; Langley, G. J.; Avent, A. 

G.; Dennis, T. J.; Hare, J. P.; Kroto, H. W.; Walton, D. R. M. J. Chem. Soc, 
Chem. Commun. 1991, 966. 
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